

Ultimate Guide to JPQL

www.thoughts-on-java.org

Selection – The FROM clause
The FROM clause defines from which entities the data gets selected.
Hibernate, or any other JPA implementation, maps the entities to the
according database tables.

The syntax of a JPQL FROM clause is similar to SQL but uses the
entity model instead of table or column names.

Joining multiple entities

Inner Joins
If you want to select data from multiple entities, like all authors and
the books they’ve written, you have to join the entities in the FROM
clause. The easiest way to do that is to use the defined associations
of an entity like in the following code snippet.

JOINs of unrelated entities are not supported by the JPA
specification, but you can use a theta join which creates a cartesian
product and restricts it in the WHERE clause to the records with
matching foreign and primary keys.

SELECT a FROM Author a

SELECT a, b FROM Author a JOIN a.books b

SELECT b, p FROM Book b, Publisher p WHERE

b.fk_publisher = p.id

http://www.thoughts-on-java.org/

Ultimate Guide to JPQL

www.thoughts-on-java.org

Left Outer Joins
If you want to include the authors without published books, you have
to use a LEFT JOIN, like in the following code snippet.

Additional Join Conditions
Sometimes you only want to join the related entities which fulfill
additional conditions. Since JPA 2.1, you can do this for INNER JOINs
and LEFT JOINs with an additional ON statement

Path expressions or implicit joins
Path expressions create implicit joins and are one of the benefits
provided by the entity model. You can use the ‘.’ operator to navigate
to related entities like I do in the following code snippet.

SELECT a, p FROM Author a JOIN a.publications p

ON p.publishingDate > ?1

SELECT a, b FROM Author a LEFT JOIN a.books b

SELECT b FROM Book b

WHERE b.publisher.name LIKE ‘%es%

http://www.thoughts-on-java.org/

Ultimate Guide to JPQL

www.thoughts-on-java.org

Polymorphism and Downcasting

Polymorphism
When you choose an inheritance strategy that supports polymorphic
queries, your query selects all instances of the specified class and its
subclasses.

Or you can select a specific subtype of a Publication, like a BlogPost.

Downcasting
Since JPA 2.1, you can also use the TREAT operator for downcasting
in FROM and WHERE clauses. I use that in the following code snippet
to select all Author entities with their related Book entities.

SELECT p FROM Publication p

SELECT b FROM BlogPost b

SELECT a, p FROM Author a

JOIN treat (a.publications AS Book) p

http://www.thoughts-on-java.org/

Ultimate Guide to JPQL

www.thoughts-on-java.org

Restriction – The WHERE clause
The next important part of a JPQL query is the WHERE clause which
you can use to restrict the selected entities to the ones you need for
your use case. The syntax is very similar to SQL, but JPQL supports
only a small subset of the SQL features. If you need more
sophisticated features for your query, you can use a native SQL
query.

JPQL supports a set of basic operators to define comparison
expressions. Most of them are identical to the comparison operators
supported by SQL and you can combine them with the logical
operators AND, OR and NOT into more complex expressions.

Operators for single-valued expressions
 Equal: author.id = 10
 Not equal: author.id <> 10
 Greater than: author.id > 10
 Greater or equal then: author.id => 10
 Smaller than: author.id < 10
 Smaller or equal then: author.id <= 10
 Between: author.id BETWEEN 5 and 10
 Like: author.firstName LIKE ‘%and%’

The % character represents any character sequence. This
example restricts the query result to all Authors with a
firstName that contains the String ‘and’, like Alexander or
Sandra. You can use an _ instead of % as a single character
wildcard. You can also negate the operator with NOT to exclude
all Authors with a matching firstName.

 Is null: author.firstName IS NULL
You can negate the operator with NOT to restrict the query
result to all Authors who’s firstName IS NOT NULL.

 In: author.firstName IN (‘John’, ‘Jane’)
Restricts the query result to all Authors with the first name
John or Jane.

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/jpa-native-queries/
http://www.thoughts-on-java.org/jpa-native-queries/

Ultimate Guide to JPQL

www.thoughts-on-java.org

Operators for collection expressions
 Is empty: author.books IS EMPTY

Restricts the query result to all Authors without associated
Book entities. You can negate the operator (IS NOT EMPTY) to
restrict the query result to all Authors with associated Book
entities.

 Size: size(author.books) > 2
Restricts the query result to all Authors who are associated with
more than 2 Book entities.

 Member of: :myBook member of author.books
Restricts the query result to all Authors who are associated with
a specific Book entity.

Example
You can use one or more of the operators to restrict your query
result. The following query returns all Author entities with a
firstName attribute that contains the String “and” and an id attribute
greater or equal 20 and who have written at least 5 books.

SELECT a FROM Author a

WHERE a.firstName like ‘%and%’

and a.id >= 20

and size(author.books) >= 5

http://www.thoughts-on-java.org/

Ultimate Guide to JPQL

www.thoughts-on-java.org

Projection – The SELECT clause
The projection of your query defines which information you want to
retrieve from the database. This part of the query is very different to
SQL. In SQL, you specify a set of database columns and functions as
your projection. You can do the same in JPQL by selecting a set of
entity attributes or functions as scalar values, but you can also define
entities or constructor calls as your projection. Hibernate, or any
other JPA implementation, maps this information to a set of database
columns and function calls to define the projection of the generated
SQL statement.

Entities
Entities are the most common projection in JPQL queries. Hibernate
uses the mapping information of the selected entities to determine
the database columns it has to retrieve from the database. It then
maps each row of the result set to the selected entities.

Scalar values
Scalar value projections are very similar to the projections you know
from SQL. Instead of database columns, you select one or more
entity attributes or the return value of a function call with your
query.

SELECT a FROM Author a

SELECT a.firstName, a.lastName FROM Author a

http://www.thoughts-on-java.org/

Ultimate Guide to JPQL

www.thoughts-on-java.org

Constructor references
Constructor references are a good projection for read-only use
cases. They’re more comfortable to use than scalar value projections
and avoid the overhead of managed entities.

JPQL allows you to define a constructor call in the SELECT clause.

Distinct query results
You probably know SQL’s DISTINCT operator which removes
duplicates from a projection. JPQL supports this operator as well.

SELECT new org.thoughts.on.java.model.AuthorValue

(a.id, a.firstName, a.lastName)

FROM Author a

SELECT DISTINCT a.lastName FROM Author a

http://www.thoughts-on-java.org/

Ultimate Guide to JPQL

www.thoughts-on-java.org

Functions
Functions are another powerful feature of JPQL that you probably
know from SQL. It allows you to perform basic operations in the
WHERE and SELECT clause. You can use the following functions in
your query:

 upper(String s): transforms String s to upper case
 lower(String s): transforms String s to lower case
 current_date(): returns the current date of the database
 current_time(): returns the current time of the database
 current_timestamp(): returns a timestamp of the current date

and time of the database
 substring(String s, int offset, int length): returns a substring of

the given String s
 trim(String s): removes leading and trailing whitespaces from

the given String s
 length(String s): returns the length of the given String s
 locate(String search, String s, int offset): returns the position of

the String search in s. The search starts at the position offset
 abs(Numeric n): returns the absolute value of the given number
 sqrt(Numeric n): returns the square root of the given number
 mod(Numeric dividend, Numeric divisor): returns the

remainder of a division
 treat(x as Type): downcasts x to the given Type
 size(c): returns the size of a given Collection c
 index(orderdCollection): returns the index of the given value in

an ordered Collection

http://www.thoughts-on-java.org/

Ultimate Guide to JPQL

www.thoughts-on-java.org

Grouping – The GROUP BY and HAVING clause
When you use aggregate functions, like count(), in your SELECT
clause, you need to reference all entity attributes that are not part of
the function in the GROUP BY clause.

The following code snippet shows an example that uses the
aggregate function count() to count how often each last name occurs
in the Author table.

The HAVING clause is similar to the WHERE clause and allows you to
define additional restrictions for your query. The main difference is
that the restrictions defined in a HAVING clause are applied to a
group and not to a row.

I use it in the following example to select all last names that start
with a ‘B’ and count how often each of them occurs in the Author
table.

SELECT a.lastName, COUNT(a)

FROM Author a

GROUP BY a.lastName

SELECT a.lastName, COUNT(a)

FROM Author a

GROUP BY a.lastName

HAVING a.lastName LIKE ‘B%’

http://www.thoughts-on-java.org/

Ultimate Guide to JPQL

www.thoughts-on-java.org

Ordering – The ORDER BY clause
You can define the order in which the database shall return your
query results with an ORDER BY clause. Its definition in JPQL is
similar to SQL. You can provide one or more entity attributes to the
ORDER BY clause and specify an ascending (ASC) or a descending
(DESC) order.

Subselects
A subselect is a query embedded into another query. It’s a powerful
feature you probably know from SQL. Unfortunately, JPQL supports
it only in the WHERE clause and not in the SELECT or FROM clause.

Subqueries can return one or multiple records and can use the
aliases defined in the outer query. The following example shows a
query that uses a subquery to count all Books written by an Author
and returns only the Authors who’ve written more than 1 Book.

SELECT a FROM Author a

ORDER BY a.lastName ASC, a.firstName DESC

SELECT a FROM Author a

WHERE (SELECT count(b) FROM Book b WHERE a

MEMBER OF b.authors) > 1

http://www.thoughts-on-java.org/

